Butler Ladegaard (chillengine68)

TGF-β is long known to require Ras activation to induce EMT. In a recent issue of Nature, Massagué and colleagues (Su et al., 2020) identify RAS-responsive element binding protein 1 (RREB1) as a critical integrator of TGF-β and Ras signals during both developmental and cancer EMT programs. Chromosomes containing two centromeres (dicentrics) trigger chromosome instability that is avoided by the enigmatic process of centromere inactivation. In this issue of Developmental Cell, Palladino et al. (2020) combine in vivo chromosome engineering and Drosophila genetics to assess consequences of de novo centromere formation and clarify models of centromere inactivation. Boundary formation between nascent tissues prevents cell mixing, powering morphogenesis. In this issue of Developmental Cell, Sidor et al. (2020) describe a novel mechanism whereby the homophilic adhesion protein Crumbs regulates planar-polarized assembly of actomyosin cables at tissue boundaries by affecting dynamics of membrane recruitment of the myosin regulator Rho-kinase. Spatial repositioning of genes in nuclear space has been extensively linked to regulation of gene expression, but the mechanisms behind this directed movement have remained uncertain. In this issue of Developmental Cell, Wang et al. (2020) describe a nuclear actin-myosin-based pathway driving the movement of activated genes to the nuclear periphery. Drosophila neural progenitors require the transcriptional repressor Prospero to promptly establish the neuronal fate of their daughter cells to avoid tumorigenesis. In this issue of Developmental Cell, Liu et al. (2020) find that Prospero is mitotically implanted and forms liquid-like droplets mediating HP1a condensation to permanently repress its targets. Class I phosphoinositide-3-kinases (PI3Ks) phosphorylate PIP2 at its 3' inositol position to generate PIP3, a second messenger that influences signaling cascades regulating cellular growth, survival, and proliferation. Previous studies have suggested that PI3Kα activation involves dislodging the p85α nSH2 domain from the p110α catalytic subunit by binding activated receptor tyrosine kinases. We carried out molecular dynamics simulations to determine, mechanistically and structurally, how PI3Kα conformations are influenced by physiological effectors and the nSH2 domain. We demonstrate that changes in protein dynamics mediated by allosteric regulation significantly increase the population of catalytically competent states without changing the enzyme ground-state structure. Furthermore, we demonstrate that modulation of active-site residue interactions with enzyme substrates can reciprocally influence nSH2 domain dynamics. Together, these results suggest that dynamic allostery plays a role in populating the catalytically competent conformation of PI3Kα, and provide a key platform for the design of novel chemotherapeutic PI3Kα inhibitors. Members of the family Reoviridae package several copies of the viral polymerase complex into their capsid to carry out replication and transcription within viral particles. Classical single-particle reconstruction encounters difficulties resolving structures such as the intraparticle polymerase complex because refinement can converge to an incorrect map and because the map could depict a nonrepresentative subset of particles or an average of heterogeneous particles. Using the nine-segmented Fako virus, we tested hypotheses for the arrangement and number of polymerase complexes within the virion by measuring how well each hypothesis describes the set of cryoelectron microscopy images of individual viral particles. We find that the polymerase complex in Fako virus binds at ten possible sites despite having only nine genome segments. A single asymmetric configuration describes the arrangement of these complexes in both virions and genome-free capsids. Similarities between the arrangements of Reoviridae with 9, 10, and 11 segments in