Gaines Ladefoged (cellarfog4)

An outdoor anaerobic fermentation reactor loses a significant amount of energy due to heat dissipation to the surrounding environment. The digester of direct absorption biogas can effectively utilize solar energy and scattering of the medium to enhance reaction temperature, which can promote anaerobic fermentation of microorganisms. A numerical model for the direct absorption methane digester was established to investigate the mechanism of photo biochemical transformation. The average relative values of simulated results were 4.1% and 9.6%, indicating that the model can effectively simulate the heat transfer process of biogas slurry under solar irradiation. Decreasing the albedo and increasing the effect of forward scattering of small particles can improve the regenerative performance and biogas production of digester. Increasing the backward scattering effect of small particles limited biogas fermentation. Scattering distribution had bigger effects on the rates of biogas and propionic acid production than those of albedo.Low ability of waste sewage sludge to degrade cellulose is observed due to its less cellulolytic bacteria content. The enrichment of sewage sludge in the absence or presence of carboxymethylcellulose (CMC) was conducted to improve anaerobic digestion (AD) of cellulose in this study. Compared to initial sewage sludge (IS), enriched sludge without CMC addition (ES) displayed 69.81% higher CH4 yield and about 1.7-fold greater anaerobic biodegradation of cellulose. In particular, bacterial and archaeal diversities in samples inoculated with ES were significantly altered, with Ruminiclostridium and Methanobacterium as the predominant genera. Enriched sludge with CMC addition (ESC) displayed enhanced methane production at initial cellulose fermentation but showed no distinct difference compared with the control after incubation 24 days. These findings suggest that enrichment of waste sewage sludge without CMC addition is more beneficial for promoting AD of cellulose, providing a novel insight for efficient energy utilization of lignocellulosic wastes.To enable the production of butanol with undiluted, non-detoxified sugarcane bagasse hemicellulose hydrolysates, this study developed a three-staged repeated-batch immobilized cell fermentation in which the efficiency of a 3D-printed nylon carrier to passively immobilize Clostridium saccharoperbutylacetonicum DSM 14923 was compared with sugarcane bagasse. The first stage consisted of sugarcane molasses fermentation, and in the second stage, non-detoxified sugarcane bagasse hemicellulose hydrolysates (SBHH) was pulse-fed to sugarcane molasses fermentation. In the next four batches, immobilized cells were fed with undiluted SBHH supplemented with molasses, and SBHH-derived xylose accounted for approximately 50% of the sugars. Bagasse was a superior carrier, and the average xylose utilization (33%) was significantly higher than the treatment with the 3D-printed carrier (16%). Notably, bagasse allowed for 43% of the butanol to be SBHH-derived. Overall, cell immobilization on lignocellulosic materials can be an efficient strategy to produce butanol from repeated-batch fermentation of non-detoxified hemicellulose hydrolysates.By handling conflicting traffic movements and establishing dynamic coordination between intersections in real-time, the Adaptive Signal Control System (ASCS) can potentially improve the operation and safety of signalized intersections on a corridor. This study identifies the hierarchical effects of ASCS on the crash severity by exploring the heterogeneous effect of ASCS on the crash severity. Four different random-parameter ordered regression models (two ordered probit models, and two ordered logit models) are developed and compared. The analysis reveals that the random-parameter ordered probit and logit models (ROP and ROL) with observed heterogeneity perform better than the random-parameter ordered probit and logit models (RP and RL) without observe