Abildtrup Valenzuela (canvasdog27)
experiment investigates the impact of a brief yet actionable intervention that can be easily disseminated to increase individuals' trust in science, with the intention of affecting misinformation believability and, consequently, preventive behavioral intentions. ClinicalTrials.gov NCT04557241; https//clinicaltrials.gov/ct2/show/NCT04557241. PRR1-10.2196/24383. PRR1-10.2196/24383. The COVID-19 pandemic has reached 40 million confirmed cases worldwide. Given its rapid progression, it is important to examine its origins to better understand how people's knowledge, attitudes, and reactions have evolved over time. One method is to use data mining of social media conversations related to information exposure and self-reported user experiences. This study aims to characterize the knowledge, attitudes, and behaviors of social media users located at the initial epicenter of the outbreak by analyzing data from the Sina Weibo platform in Chinese. We used web scraping to collect public Weibo posts from December 31, 2019, to January 20, 2020, from users located in Wuhan City that contained COVID-19-related keywords. We then manually annotated all posts using an inductive content coding approach to identify specific information sources and key themes including news and knowledge about the outbreak, public sentiment, and public reaction to control and response measures. We identified 10,159 e sentiment after being exposed to information, and public reaction that translated to self-reported behavior. These findings provide early insight into changing knowledge, attitudes, and behaviors about COVID-19, and have the potential to inform future outbreak communication, response, and policy making in China and beyond. Between the announcement of pneumonia and respiratory illness of unknown origin in late December 2019 and the discovery of human-to-human transmission on January 20, 2020, we observed a high volume of public anxiety and confusion about COVID-19, including different reactions to the news by users, negative sentiment after being exposed to information, and public reaction that translated to self-reported behavior. These findings provide early insight into changing knowledge, attitudes, and behaviors about COVID-19, and have the potential to inform future outbreak communication, response, and policy making in China and beyond.Dynamic memristor (DM)-cellular neural networks (CNNs), which replace a linear resistor with flux-controlled memristor in the architecture of each cell of traditional CNNs, have attracted researchers' attention. Compared with common neural networks, the DM-CNNs have an outstanding merit when a steady state is reached, all voltages, currents, and power consumption of DM-CNNs disappeared, in the meantime, the memristor can store the computation results by serving as nonvolatile memories. buy PIK-90 The previous study on stability of DM-CNNs rarely considered time delay, while delay is quite common and highly impacts the stability of the system. Thus, taking the time delay effect into consideration, we extend the original system to DM-D(delay)CNNs model. By using the Lyapunov method and the matrix theory, some new sufficient conditions for the global asymptotic stability and global exponential stability with a known convergence rate of DM-DCNNs are obtained. These criteria generalized some known conclusions and are easily verified. Moreover, we find DM-DCNNs have 3ⁿ equilibrium points (EPs) and 2ⁿ of them are locally asymptotically stable. These results are obtained via a given constitutive relation of memristor and the appropriate division of state space. Combine with these theoretical results, the applications of DM-DCNNs can be extended to other fields, such as associative memory, and its advantage can be used in a better way. Finally, numerical simulations are offered to illustrate the effectiveness of our theoretical results.This artic