Forsyth Falkenberg (canpaste1)
Concentration ranges corresponded to percent recommended daily allowances of 2-9% SAs, 7-31% RFOs, 51-111% RS, and 57-116% total prebiotic carbohydrates. Significant SNPs and associated genes were identified for numerous traits, including a galactosyltransferase (Lcu.2RBY.1g019390) known to aid in RFO synthesis. Further studies in multiple field locations are necessary. Yet, these findings suggest the potential for molecular-assisted breeding for prebiotic carbohydrates in lentil to support human health and crop resilience to increase global food security.Spectroscopic predictions can be used for the genetic improvement of meat quality traits in cattle. No information is however available on the genetics of meat absorbance spectra. This research investigated the phenotypic variation and the heritability of meat absorbance spectra at individual wavelengths in the ultraviolet-visible and near-infrared region (UV-Vis-NIR) obtained with portable spectrometers. VBIT-4 manufacturer Five spectra per instrument were taken on the ribeye surface of 1185 Piemontese young bulls from 93 farms (13,182 Herd-Book pedigree relatives). Linear animal model analyses of 1481 single-wavelengths from UV-Vis-NIRS and 125 from Micro-NIRS were carried out separately. In the overlapping regions, the proportions of phenotypic variance explained by batch/date of slaughter (14 ± 6% and 17 ± 7%,), rearing farm (6 ± 2% and 5 ± 3%), and the residual variances (72 ± 10% and 72 ± 5%) were similar for the UV-Vis-NIRS and Micro-NIRS, but additive genetics (7 ± 2% and 4 ± 2%) and heritability (8.3 ± 2.3% vs 5.1 ± 0.6%) were greater with the Micro-NIRS. Heritability was much greater for the visible fraction (25.2 ± 11.4%), especially the violet, blue and green colors, than for the NIR fraction (5.0 ± 8.0%). These results allow a better understanding of the possibility of using the absorbance of visible and infrared wavelengths correlated with meat quality traits for the genetic improvement in beef cattle.To study the impact of acetylene on methane explosions, the safe operation of coal mines should be ensured. In this paper, a 20 L spherical tank was used to study the explosive characteristics of acetylene-methane-air mixture. In addition, the GRI-Mech3.0 mechanism was used to study the chemical kinetic mechanism for the mixed gas, and the effect of adding acetylene on the sensitivity of methane and the yield of free radicals was analysed. The results show that acetylene can expand the scope for methane explosion, lower the lower explosion limit, and increase the risk of explosion. Acetylene increases the maximum explosion pressure, laminar combustion rate and maximum pressure rise rate for the methane-air mixture while shortening the combustion time. Three combustion modes for the acetylene-methane-air mixture were determined methane-dominated, transitional and acetylene-dominated combustion modes. Chemical kinetic analysis for the mixed gas shows that as the volume fraction of acetylene increases, the generation rate for key free radicals (H*, O* and OH*) gradually increases, thereby increasing the intensity of the explosive reaction. The results from this research will help formulate measures to prevent coal mine explosion accidents.Heterozygous variants in CLTC, which encode the clathrin heavy chain protein, cause neurodevelopmental delay of varying severity, and often accompanied by dysmorphic features, seizures, hypotonia, and ataxia. To date, 28 affected individuals with CLTC variants have been reported, although their phenotypes have not been fully elucidated. Here, we report three novel de novo CLTC (NM_001288653.1) variants in three individuals with previously unreported clinical symptoms c.3662_3664delp.(Leu1221del) in individual 1, c.2878T>Cp.(Trp960Arg) in individual 2, and c.2430+1G>Tp.(Glu769_Lys810del) in individual 3. Consistent with previous reports, individuals with missense or small in-frame variants were more severely affected. Unrepo