Keller Ankersen (cannonslip5)

2 dB with a high light transmittance of ∼83%. With the Ti3C2Tx MXene coating and the PET substrate as a triboelectric pair, the layered structure offers great flexibility for the transparent film to integrate smart sound monitoring capability. Therefore, the combination of excellent EMI shielding performance, high light transmittance, and sensitive pressure response makes the Ti3C2Tx MXene-welded AgNW films promising for many potential applications in next-generation electronics.Augmented reality and visual reality (AR and VR) microdisplays require micro light emitting diodes (μLEDs) with an ultrasmall dimension (≤5 μm), high external quantum efficiency (EQE), and narrow spectral line width. Unfortunately, dry etching which is the most crucial step for the fabrication of μLEDs in current approaches introduces severe damages, which seem to become an insurmountable challenge for achieving ultrasmall μLEDs with high EQE. Furthermore, it is well-known that μLEDs which require InGaN layers as an emitting region naturally exhibit significantly broad spectral line width, which becomes increasingly severe toward long wavelengths such as green. In this paper, we have reported a combination of our selective overgrowth approach developed very recently and epitaxial lattice-matched distributed Bragg reflectors (DBRs) embedded in order to address all these fundamental issues. As a result, our μLEDs with a diameter of 3.6 μm and an interpitch of 2 μm exhibit an ultrahigh EQE of 9% at ∼500 nm. More importantly, the spectral line width of our μLEDs has been significantly reduced down to 25 nm, the narrowest value reported so far for III-nitride green μLEDs.Colloidal quantum dot (CQD) assemblies exhibit interesting optoelectronic properties when coupled to optical resonators ranging from Purcell-enhanced emission to the emergence of hybrid electronic and photonic polariton states in the weak and strong coupling limits, respectively. Here, experiments exploring the weak-to-strong coupling transition in CQD-plasmonic lattice hybrid devices at room temperature are presented for varying CQD concentrations. To interpret these results, generalized retarded Fano-Anderson and effective medium models are developed. Individual CQDs are found to interact locally with the lattice yielding Purcell-enhanced emission. Selleck Saracatinib At high CQD densities, polariton states emerge as two-peak structures in the photoluminescence, with a third polariton peak, due to collective CQD emission, appearing at still higher CQD concentrations. Our results demonstrate that CQD-lattice plasmon devices represent a highly flexible platform for the manipulation of collective spontaneous emission using lattice plasmons, which could find applications in optoelectronics, ultrafast optical switches, and quantum information science.Disordered rock salt Li2VO2F cathode material for lithium-ion batteries was investigated using operando X-ray diffraction and total scattering to gain insight into the structural changes of the short-range and long-range orders during electrochemical cycling. The X-ray powder diffraction data show the well-known pattern of the disordered rock salt cubic structure, whereas the pair distribution function (PDF) analysis reveals significant deviations from the ideal cubic structure. During battery operation, a reversible rock salt-to-amorphous phase transformation is observed, upon Li extraction and reinsertion. The X-ray total scattering data show strong indications of the formation of tetrahedrally coordinated V in a nondisordered rock salt phase of the charged electrode material. The results show that the disordered rock salt Li2VO2F material undergoes a hidden structural rearrangement during battery operation.The lack of suitable cathodes is one of the key reasons that impede the development of aqueous zinc-ion batteries. Because of the inherently unsuitable structure and inferior physicochemical properties, the low-valent V2O3 as Zn2+ host co