Maddox Marsh (candlefemale5)
Mosquito borne diseases have remained a grave threat to human health and are posing a significant burden on health authorities around the globe. The understanding and insight of mosquito breeding habitats features is crucial for their effective management. Comprehensive larval surveys were carried out at 14 sites in Qatar. A total of 443 aquatic habitats were examined, among these 130 were found positive with Culex pipiens, Cx. quinquefasciatus, Cx. mattinglyi, Ochlerotatus dorsalis, Oc. caspius and Anopheles stephensi. The majority of positive breeding habitats were recorded in urban areas (67.6%), followed by livestock (13.8%), and least were in agriculture (10.7%). An. stephensi larvae were positively correlated with Cx. pipien, Cx. ReACp53 mouse quinquefasciatus, and negatively with water salinity. Large and shaded habitats were the most preferred by An. stephensi. In addition, Cx. pipiens was positively associated with the turbidity and pH, and was negatively associated with vegetation and habitat size. A negative association of Cx. quinquefasciatus with dissolved oxygen, water temperature, and salinity, while positive with habitat surface area was observed. Oc. dorsalis was negatively correlated with pH, water temperature, depth, and habitat surface area, whereas salinity water was more preferable site for females to lay their eggs. These results demonstrate that environmental factors play a significant role in preference of both anopheline and culicine for oviposition, while their effective management must be developed as the most viable tool to minimize mosquito borne diseases. To prepare a novel Chitosan (CS)-coated-PLGA-NPs of catechin hydrate (CTH) and to improve lungs bioavailability via direct nose to lungs-delivery for the comparative assessment of a pulmokinetics study by the first-time UHPLC-MS/MS developed method in the treatment of lungs cancer via anticancer activities on H1299 lung cancer cells. PLGA-NPs was prepared by solvent evaporation (double emulsion) method followed by coated with chitosan (CS) and evaluated based on release and permeation of drug, a comparative pulmokinetics study with their anticancer activities on H1299 lung cancer cells. The particle size, PDI and ZP of the optimized CAT-PLGA-NPs and CS-CAT-PLGA-NPs were determined 124.64 ± 12.09 nm and 150.81 ± 15.91 nm, 0.163 ± 0.03 and 0.306 ± 0.03, -3.94 ± 0.19 mV and 26.01 ± 1.19 mV respectively. Furthermore, higher entrapment efficiency was observed for CS-CAT PLGA NPs. The release pattern of the CS-CAT-PLGA NPs was found to favor the release of entrapped CAT within the cancer microenvironment. CS-proach to treat lung cancers. CS-CTH-PLGA-NPs did not cause any toxicity, it showed safety and have no obvious toxic-effects on the rat's lungs and does not produce any mortality followed by no abnormal findings in the treated-rats. CS-CTH-PLGA-NPs were showed a significant role (p less then 0.001) for the enhancement of lungs-bioavailability and potentially promising approach to treat lung cancers. CS-CTH-PLGA-NPs did not cause any toxicity, it showed safety and have no obvious toxic-effects on the rat's lungs and does not produce any mortality followed by no abnormal findings in the treated-rats.Due to their vast industrial potential, cellulases have been regarded as the potential biocatalysts by both the academicians and the industrial research groups. In the present study, culturable bacterial strains of Himalayan Urban freshwater lake were investigated for cellulose degrading activities. Initially, a total of 140 bacterial strains were isolated and only 45 isolates were found to possess cellulose degrading property. On the basis of preliminary screening involving cellulase activity assay on CMC agar (with clear zone of hydrolysis) and biosafety assessment testing, only single isolate named as BKT-9 was selected for the cellulase production studies. Strain BKT-9 was characterized at the molecular level