Pearce Christoffersen (candlecobweb3)
We show that the proposed method is applicable to mono- and multi-modal segmentation tasks, achieving significant improvements over the state-of-the-art for the latter. The flexibility of the proposed framework is further demonstrated for a multi-modal registration application. As we learn to predict actions rather than a target, the proposed method is more robust compared to the 3D U-Net when dealing with previously unseen datasets, acquired using different protocols or modalities. As a result, the proposed method provides a promising multi-purpose segmentation and registration framework, particular in the context of image-guided interventions.Toxicogenomics (TGx) approaches are increasingly applied to gain insight into the possible toxicity mechanisms of engineered nanomaterials (ENMs). Omics data can be valuable to elucidate the mechanism of action of chemicals and to develop predictive models in toxicology. While vast amounts of transcriptomics data from ENM exposures have already been accumulated, a unified, easily accessible and reusable collection of transcriptomics data for ENMs is currently lacking. In an attempt to improve the FAIRness of already existing transcriptomics data for ENMs, we curated a collection of homogenized transcriptomics data from human, mouse and rat ENM exposures in vitro and in vivo including the physicochemical characteristics of the ENMs used in each study.Fires determine vegetation patterns, impact human societies, and are a part of complex feedbacks into the global climate system. Empirical and process-based models differ in their scale and mechanistic assumptions, giving divergent predictions of fire drivers and extent. Aminooxyacetate hemihydrochloride Although humans have historically used and managed fires, the current role of anthropogenic drivers of fires remains less quantified. Whereas patterns in fire-climate interactions are consistent across the globe, fire-human-vegetation relationships vary strongly by region. Taking a data-driven approach, we use an artificial neural network to learn region-specific relationships between fire and its socio-environmental drivers across the globe. As a result, our models achieve higher predictability as compared to many state-of-the-art fire models, with global spatial correlation of 0.92, monthly temporal correlation of 0.76, interannual correlation of 0.69, and grid-cell level correlation of 0.60, between predicted and observed burned area. Given the current socio-anthropogenic conditions, Equatorial Asia, southern Africa, and Australia show a strong sensitivity of burned area to temperature whereas northern Africa shows a strong negative sensitivity. Overall, forests and shrublands show a stronger sensitivity of burned area to temperature compared to savannas, potentially weakening their status as carbon sinks under future climate-change scenarios.Oxidative stress (OS) reactions are reported to be associated with oncogenesis and tumor progression. However, little is known about the potential diagnostic value of OS in gastric cancer (GC). This study identified hub OS genes associated with the prognosis and progression of GC and illustrated the underlying mechanisms. The transcriptome data and corresponding GC clinical information were collected from The Cancer Genome Atlas (TCGA) database. Aberrantly expressed OS genes between tumors and adjacent normal tissues were screened, and 11 prognosis-associated genes were identified with a series of bioinformatic analyses and used to construct a prognostic model. These genes were validated in the Gene Expression Omnibus (GEO) database. Furthermore, weighted gene co-expression network analysis (WGCNA) was subsequently conducted to identify the most significant hub genes for the prediction of GC progression. Analysis revealed that a good prognostic model was constructed with a better diagnostic accuracy than other clinicopathological characteristics in both TCGA and GEO cohorts. The model was also si