Valdez Dunn (burstnorth4)

Extreme weather events (EWEs) are expected to increase in stochasticity, frequency, and intensity due to climate change. Documented effects of EWEs, such as droughts, hurricanes, and temperature extremes, range from shifting community stable states to species extirpations. To date, little attention has been paid to how populations resist and/or recover from EWEs through compensatory (behavioral, demographic, or physiological) mechanisms; limiting the capacity to predict species responses to future changes in EWEs. Here, we systematically reviewed the global variation in species' demographic responses, resistance to, and recovery from EWEs across weather types, species, and biogeographic regions. Through a literature review and meta-analysis, we tested the prediction that population abundance and probability of persistence will decrease in populations after an EWE and how compensation affects that probability. Across 524 species population responses to EWEs reviewed (27 articles), we noted large variation in ry assess species resilience to current and future events.In sexually reproducing species, males often experience strong pre- and postcopulatory sexual selection leading to a wide variety of male adaptations. One example is mate guarding, where males prevent females from mating with other males either before or after they (will) have mated themselves. In case social conditions vary short term and in an unpredictable manner and if there is genetic variation in plasticity of mate guarding (i.e., genotype-by-environment interaction, G × E), adaptive behavioral plasticity in mate guarding may evolve. DEG-35 ic50 Here, we test for genetic variation in the plasticity of precopulatory mate-guarding behavior in the lek-mating lesser wax moth Achroia grisella. When offered two females in rapid succession, virgin males of this species usually copulate around 10-20 min with the first female. With the second female, however, they engage in copulation posture for many hours until they have produced another spermatophore, an unusual behavior among insects possibly functioning as precopulatorarding behavior evolves.The inverted repeat (IR) lacking clade (IRLC) is a monophyletic group within the Papilionoideae subfamily of Fabaceae where plastid genomes (plastomes) do not contain the large IR typical of land plants. Recently, an IRLC legume, Medicago minima, was found to have regrown a ~9 kb IR that contained a number of canonical IR genes, and closely related M. lupulina contained an incomplete IR of ~425 bp. Complete plastomes were generated for seven additional species, putative members of the M. minima clade. Polymerase chain reaction was employed to investigate the presence of the IR across M. minima and M. lupulina including individuals of nine and eight Eurasian and North African accessions and 15 and 14 Texas populations, respectively. While no sequence similar to the ~9 kb IR was detected among the seven newly sequenced plastomes, all Eurasian and North African accessions of M. minima contained the IR. Variation in IR extent was detected within and between the Texas populations. Expansions of 13 bp and 11 bp occurred at the boundaries of both IR/small single-copy regions, and populations had one or the other expansion, but not both. Expansion of the IR was not detected in the accessions from Eurasia and North Africa suggesting recent mutations yielded at least two additional plastid haplotypes in M. minima.Many animals rely on vocal communication for mating advertisement, territorial displays, and warning calls. Advertisement calls are species-specific, serve as a premating isolation mechanism, and reinforce species boundaries. Nevertheless, there is a great deal of interspecific variability of advertisement calls. Quantifying the variability of calls among individuals within a species and across species is critical to understand call evolution and species boundaries, and may build a foundation for further research in animal c