Lester Willard (burnfelony95)

This study investigated the effects of marine phytoplankton supplementation on 1) perceived recovery and ground reaction forces in humans following a non-functional overreaching resistance-training program and 2) myogenic molecular markers associated with muscle cell recovery in a rat model. In the human trial, a 5-week resistance-training program with intentional overreaching on weeks 2 and 5 was implemented. Results indicate that marine phytoplankton prompted positive changes in perceived recovery at post-testing and, while both marine phytoplankton and placebo conditions demonstrated decreased peak and mean rate of force development following the overreaching weeks, placebo remained decreased at post-testing while marine phytoplankton returned to baseline levels. In the rat model, rats were divided into four conditions (i) control, (ii) exercise, (iii) exercise + marine phytoplankton 2.55 mg·d-1, or (iv) exercise+marine phytoplankton 5.1 mg·d-1. Rats in exercising conditions performed treadmill exercise 5 d·wk-1 for 6 weeks. Marine phytoplankton in exercising rats increased positive and decrease negative myogenic factors regulating satellite cell proliferation. Taken together, marine phytoplankton improved perceptual and functional indices of exercise recovery in an overreaching human model and, mechanistically, this could be driven through cell cycle regulation and a potential to improve protein turnover.This study tested the hypotheses that activation of central command and muscle mechanoreflex during post-exercise recovery delays fast-phase heart rate recovery with little influence on the slow phase. G Protein agonist Twenty-five healthy men underwent three submaximal cycling bouts, each followed by a different 5-min recovery protocol active (cycling generated by the own subject), passive (cycling generated by external force) and inactive (no-cycling). Heart rate recovery was assessed by the heart rate decay from peak exercise to 30 s and 60 s of recovery (HRR30s, HRR60s fast phase) and from 60 s-to-300 s of recovery (HRR60-300s slow phase). The effect of central command was examined by comparing active and passive recoveries (with and without central command activation) and the effect of mechanoreflex was assessed by comparing passive and inactive recoveries (with and without mechanoreflex activation). Heart rate recovery was similar between active and passive recoveries, regardless of the phase. Heart rate recovery was slower in the passive than inactive recovery in the fast phase (HRR60s=20±8vs.27 ±10 bpm, p less then 0.01), but not in the slow phase (HRR60-300s=13±8vs.10±8 bpm, p=0.11). In conclusion, activation of mechanoreflex, but not central command, during recovery delays fast-phase heart rate recovery. These results elucidate important neural mechanisms behind heart rate recovery regulation.Researchers suggest that motion deriving energy from the more proximal segments of the body is important to reduce injury susceptibility. However, limited clinical assessments have been associated with efficient energy flow within a complex movement such as the baseball pitch. This research aimed to determine the relationship between glenohumeral stability as determined by the closed kinetic chain upper extremity stability test and energy transfer into and out of the humerus during the baseball pitching motion. Kinematic and kinetic data were collected at 240 Hz on twenty-four baseball pitchers. Participants performed the closed kinetic chain upper extremity stability test prior to throwing three fastballs at game speed to a catcher with the fastest fastball used for analysis. Spearman's Rho were used to examine relationships between energy flow in and out of the humerus with glenohumeral stability as determined by the average score and normalized stance width during the closed kinetic chain upper extremity stability test. There was a significant negative correlation between the average score and normalized peak power le