Kokholm Kring (brownattack0)

One prominent effect of nutrient pollution of surface waters is the mass invasion of floating plants, which can clog waterways, disrupting human use of aquatic systems. These plants are widely vilified and motivate expensive control campaigns, but their presence may be providing a poorly recognized function in the cycling of excess nutrients. The capacity for floating plants to absorb nutrients from surface water has been understood for decades, primarily from their use in constructed wetlands for wastewater treatment. Yet, in natural settings, there has not been to date any effort to quantify whether floating plant invasions represent important pools or fluxes of nutrients relative to those of the river catchments in which they occur. We found that seasonal hydrologic cycles in the Zambezi trap and flush floating plants from river choke points, such as dams and river confluences, on an annual basis. Peak plant biomass at such choke points constitutes a proxy for estimating annual plant-bound nutrient loads. We assessed the significance of floating vegetation as nutrient sinks by comparing annual plant-bound nutrient loading to conventional river nutrient loading (dissolved and particulate) for four tributaries of the Zambezi River in Zambia. We found that the relative importance of floating vegetation was greatest in the more urbanized catchments, such as the Maramba River draining the city of Livingstone, representing approximately 30% and 9% of annual digestible phosphorus and nitrogen flux respectively. We also found plant-bound phosphorus to be important in the Kafue River (19%), draining the industrial town of Kafue and extensive sugarcane plantations. These results demonstrate the great potential of floating plants to take up excess nutrients from natural river systems. Given the importance of hydrology in the life cycle of floating vegetation, controlled dam discharges may have an important role in managing them and their water quality treatment functions.Seabirds redistribute nutrients between different ecosystem compartments and over vast geographical areas. This nutrient transfer may impact both local ecosystems on seabird breeding islands and regional biogeochemical cycling, but these processes are seldom considered in local conservation plans or biogeochemical models. The island of Stora Karlsö in the Baltic Sea hosts the largest concentration of piscivorous seabirds in the region, and also hosts a large colony of insectivorous House martins Delichon urbicum adjacent to the breeding seabirds. We show that a previously reported unusually high insectivore abundance was explained by large amounts of chironomids-highly enriched in δ15N-that feed on seabird residues as larvae along rocky shores to eventually emerge as flying adults. Benthic ammonium and phosphate fluxes were up to 163% and 153% higher close to the colony (1,300 m distance) than further away (2,700 m) and the estimated nutrient release from the seabirds at were in the same order of magnitude as the loads from the largest waste-water treatment plants in the region. The trophic cascade impacting insectivorous passerines and the substantial redistribution of nutrients suggest that seabird nutrient transfer should be increasingly considered in local conservation plans and regional nutrient cycling models.Biofilm colonisation of surfaces is of critical importance in various areas ranging from indwelling medical devices to industrial setups. Of particular importance is the reduced susceptibility of bacteria embedded in a biofilm to existing antimicrobial agents. In this paper, we demonstrate that remotely actuated magnetic cantilevers grafted on a substrate act efficiently in preventing bacterial biofilm formation. SB203580 order When exposed to an alternating magnetic field, the flexible magnetic cantilevers vertically deflect from their initial position periodically, with an extremely low frequency (0.16 Hz). The cantilevers' beating prevents the initia