Tobiasen Gottlieb (bowlplanet3)
Conclusion A high reproducibility of BCM measurements was found for fat mass, lean tissue mass, extracellular water and total body water. Reference values for these BCM parameters were calculated in over 2000 children and adolescents aged 3 to 18 years. What is Known • The 4-compartment model is regarded as the 'gold standard' of body composition methods, but is inappropriate for regular follow-up or screening of large groups, because of associated limitations. • Body Composition Monitor® is an inexpensive field method that has the potential to be an adequate monitoring tool. What is New • Good reproducibility of BCM measurements in children provides evidence to use the device in longitudinal follow-up, multicentre and comparative studies. • Paediatric reference values relative to age and sex for the various compartments of the body are provided.Two distinct genetically defined entities of ependymoma arising in the supratentorial compartment are characterized by the presence of either a C11orf95-RELA or a YAP-MAMLD1 fusion, respectively. There is growing evidence that supratentorial ependymomas without these genetic features exist. In this study, we report on 18 pediatric non-RELA/non-YAP supratentorial ependymomas that were systematically characterized by means of their histology, immunophenotype, genetics, and epigenomics. Comprehensive molecular analyses included high-resolution copy number analysis, methylation profiling, analysis of fusion transcripts by Nanostring technology, and RNA sequencing. PEG400 purchase Based upon histological and immunohistochemical features two main patterns were identified-RELA-like (n = 9) and tanycytic ependymomas (n = 6). In the RELA-like group histologically assigned to WHO grade III and resembling RELA-fused ependymomas, tumors lacked nuclear expression of p65-RelA as a surrogate marker for a pathological activation of the NF-κate that in addition to ependymomas discovered so far, at least two more supratentorial ependymoma types (RELA-like and tanycytic) exist.Several fMRI studies have shown that the superior cerebellum exhibits load-dependent activations during encoding of letters in a Sternberg verbal working memory (VWM) task. It has been hypothesized that the cerebellum regulates the acquisition of sensory data across all modalities, and thus, that VWM load activations may reflect high- vs low-load differences in sensory acquisition demands. Therefore, increased difficulty in sensory data acquisition should elicit greater activation in the cerebellum. The present fMRI study manipulated sensory acquisition in VWM by presenting visually degraded and non-degraded stimuli with high and low memory loads, thereby identifying load-dependent regions of interest in the cerebellum, and then testing if these regions showed greater activation for degraded stimuli. Results yielded partial support for the sensory acquisition hypothesis in a load-dependent region of the vermis, which showed significantly greater activation for degraded relative to non-degraded stimuli. Because eye movements did not differ for these stimulus types, and degradation-related activations were present after co-varying eye movements, this activation appears to be related to perceptual rather than oculomotor demands. In contrast to the vermis, load-sensitive regions of the cerebellar hemispheres did not show increased activation for degraded stimuli. These findings point to an overall function of association-based prediction that may underlie general cerebellar function, with perceptual prediction of stimuli from partial representations occurring in the vermis, and articulatory prediction occurring in the hemispheres. Intense and continuous physical training in sports is related with psychological and physiological stress, affecting the health and well-being of athletes. The development of non-invasive sampling methodologies is essential to consider sweat as a potential biological fluid for stress biomarker asses