Tange Vincent (botanyband1)

mortality, a wide range of disease outcomes has been observed in waterfowl species. In this study, we examined which gene segments contribute to severe disease in mallards infected with H5N8 HPAI viruses. No virus gene was solely responsible for attenuating the high virulence of a 2016 H5N8 virus, but the PB2, NP, and M segments significantly reduced mortality. The findings herein advance our knowledge on the pathobiology of avian influenza viruses in waterfowl and have potential implications on the ecology and epidemiology of H5Nx HPAI in wild bird populations.Frankliniella occidentalis (western flower thrips=WFT) and Thrips tabaci (onion thrips=OT) are insect species that greatly impact horticultural crops through direct damage and their efficient vectoring of tomato spotted wilt virus and iris yellow spot virus. In this study we collected thrips of these species from 12 field populations in various regions in Italy. We also included one field population of Neohydatothrips variabilis (soybean thrips=ST) from the U.S.A. Total RNAseq from high-throughput sequencing (HTS) was used to assemble the virome and then we assigned putative viral contigs to each thrips sample by qRT-PCR. Excluding plant and fungal viruses, we were able to identify 61 viral segments, corresponding to 41 viruses 14 were assigned to WFT, 17 to OT, one from ST and 9 viruses could not be assigned to any species based on our stringent criteria. All these viruses are putative representative of new species (with only the exception of a sobemo-like virus that is 100% identical to a virus recently chaect and indirect damage they cause to a number of different crops. The thrips virome here characterized includes several novel viruses, that in some cases reveal previously undescribed clades. More importantly, some of the viruses we describe are part of a core virome that is specific and consistently present in distinct geographical locations monitored over the years, hinting at a possible mutualistic symbiotic relationship with their host.Microbial degradation plays an important role in environmental remediation. However, most microorganisms' pollutant-degrading capabilities are weakened due to their entry into a viable but nonculturable (VBNC) state. Although there is some evidence for the VBNC state of pollutant-degrading bacteria, limited studies have been conducted to investigate the VBNC state of pollutant degraders among fungi. In this work, the morphological, physiological, and molecular changes of phenol-degrading yeast strain LN1 exposed to high phenol concentrations were investigated. The results confirmed that Candida sp. strain LN1, which possessed a highly efficient capability of degrading 1,000 mg/liter of phenol as well as a high potential for aromatic compound degradation, entered into the VBNC state after 14 h of incubation with 6,000 mg/liter phenol. Resuscitation of VBNC cells can restore their phenol degradation performance. Compared to normal cells, significant dwarfing, surface damage, and physiological changes of VBNC ceollutant degraders and how they restored the activities that were inhibited under stressful conditions. Enhanced bioremediation performance of indigenous microorganisms could be expected by preventing and controlling the formation of the VBNC state.This article describes what an end-of-life doula is, the training involved and how these individuals can help someone achieve the death they want, reflecting on a role that has existed traditionally in communities for centuries without formal recognition. How end-of-life doulas work holistically but also practically will be considered, outlining how keeping the dying person's preferences and wishes at the heart of their care is the primary aim. Recent issues such as advance care planning, digital legacy and Do Not Attempt Cardiopulmonary Resuscitation (DNACPR) will be reflected on through the lens of the end-of-life doula, with the aim of encouraging open discussion and death ora