Yde Didriksen (blousebutane38)

Metabolic acidosis occurs frequently in patients with kidney transplant and is associated with higher risk for and accelerated loss of graft function. To date, it is not known whether alkali therapy in these patients improves kidney function and whether acidosis and its therapy is associated with altered expression of proteins involved in renal acid-base metabolism. We collected retrospectively kidney biopsies from 22 patients. Of these patients, 9 had no acidosis, 9 had metabolic acidosis (plasma HCO3- < 22 mmol/l), and 4 had acidosis and received alkali therapy. We performed transcriptome analysis and immunohistochemistry for proteins involved in renal acid-base handling. We found the expression of 40 transcripts significantly changed between kidneys from non-acidotic and acidotic patients. Cilengitide Integrin inhibitor These genes are mostly involved in proximal tubule amino acid and lipid metabolism and energy homeostasis. Three transcripts were fully recovered by alkali therapy the Kir4.2 K+-channel, an important regulator oe downregulation of critical players contributes to metabolic acidosis in these patients.Understanding the genetic architecture of complex traits is a major objective in biology. The standard approach for doing so is genome-wide association studies (GWAS), which aim to identify genetic polymorphisms responsible for variation in traits of interest. In human genetics, consistency across studies is commonly used as an indicator of reliability. However, if traits are involved in adaptation to the local environment, we do not necessarily expect reproducibility. On the contrary, results may depend on where you sample, and sampling across a wide range of environments may decrease the power of GWAS because of increased genetic heterogeneity. In this study, we examine how sampling affects GWAS in the model plant species Arabidopsis thaliana. We show that traits like flowering time are indeed influenced by distinct genetic effects in local populations. Furthermore, using gene expression as a molecular phenotype, we show that some genes are globally affected by shared variants, while others are affected by variants specific to subpopulations. Remarkably, the former are essentially all cis-regulated, whereas the latter are predominately affected by trans-acting variants. Our result illustrate that conclusions about genetic architecture can be extremely sensitive to sampling and population structure.With global expansion of the two main vectors of dengue, Aedes aegypti (Linnaeus, Diptera Culicidae) and Aedes albopictus (Skuse, Diptera Culicidae), there is a need to further develop cost-effective and user-friendly surveillance tools to monitor the population dynamics of these species. The abundance of Ae. aegypti and Ae. Albopictus, and associated bycatch captured by Male Aedes Sound Traps (MASTs) and BG-Sentinel (BGS) traps that were unbaited or baited with BG-Lures were compared in Cairns, Australia and Madang, Papua New Guinea. Mean male Ae. aegypti and Ae. albopictus catch rates in MASTs did not significantly differ when deployed with BG-Lures. Similarly, males of both these species were not sampled at statistically different rates in BGS traps with or without BG-Lures. However, MASTs with BG-Lures caught significantly less male Ae. aegypti than BGS traps baited with BG-Lures in Cairns, and MASTs without BG-Lures caught significantly more male Ae. albopictus than BGS traps without BG-Lures in Madang. Additionally, BG-Lures significantly increased female Ae. aegypti catch rates in BGS traps in Cairns. Lastly, bycatch capture rates in BGS traps were not significantly influenced by the addition of the BG-Lures. While this study provides useful information regarding the surveillance of Ae. aegypti and Ae. albopictus in these locations, further development and investigation is required to successfully integrate an olfactory lure into the MAST system.Dosage compensation balances gene ex