Ernst Weinstein (beardsearch24)

Rapid response to Hg2+ is also observed when the nanoparticles are composited within hydrogels. Moreover, GABA-Cit@AgNPs shows antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The fast and sensitive response of the proposed Hg2+ sensor, together with its antibacterial activities, makes GABA-Cit@AgNPs potentially applicable for the development of cheap, portable, colorimetric sensors in fieldwork.The value of pH in various parts of protoplasm can affect nearly all aspects of cell functions. Therefore, the determination of intracellular acid-base features is required in many areas of biological and biochemical studies. Because of a significant scientific importance of in vivo intracellular pH measurements, various groups carried out such experiments. In this review article we describe intracellular pH measurements using two the most sensitive optical spectroscopies surface-enhanced Raman scattering (SERS) and fluorescence. It is reasonable to present these two techniques in one review article because the experimental approach in Raman and fluorescence experiments is relatively similar. The basic theoretical background explaining the mechanism of operation of fluorescence and SERS sensors are discussed and the motivations to carry out intracellular pH measurements are briefly described. Future perspectives in this field are also discussed.β-galactosidase is of great significance to living organisms, which is an important marker of primary ovarian cancer and cellular senescence. To detect the activity of β-galactosidase, a novel fluorescent probe ESIPT-GAL which based on excited state intramolecular proton transfer (ESIPT) mechanism for detecting β-galactosidase is developed in this work with low background fluorescence and high sensitivity (ΦF = 0.0045-0.2409). The fluorescence intensity at 552 nm of this probe increased by ~ 55 times with β-galactosidase addition (0-4 U/mL), and its detection limit is very low (3.9 × 10-5 U/mL). In addition, the spectral data (pseudo-first-order rate 1.303 min-1) and enzyme kinetic parameter (Vmax = 69.5 μΜ•S-1) both show that the probe can achieve rapid response to β-galactosidase. Moreover, the probe has good water solubility, which ensures that it has good biocompatibility and can be easily applied to detect β-galactosidase in living cells and tissues. Importantly, the probe ESIPT-GAL can monitor β-galactosidase in deep mouse tissue sections (90 μm).The effects of argon and nitrogen cold plasma treatments on the lipolytic enzymes activity in wheat germ were investigated. Using argon as plasma gas, the residual activity of lipase and lipoxygenase decreased to 42.50% and 87.72%, respectively after 30 min. Switching plasma input gas to nitrogen, the residual activities of lipase and lipoxygenase after the same time of atmospheric cold plasma (ACP) treatment were 77.50% and 92.52%, respectively. The antioxidant potential and phenolic compounds show no significant difference during ACP duration. However, the remaining activities of lipase and lipoxygenase after 30 min steam autoclaving were 6.25% and 18.60%, respectively. Also, the antioxidant activity and total phenolic content reduced by 14.70% and 30.80%, respectively. In brief, the ACP treatment efficiency was function of the input gas and the treatment time. The presented results about the input gas impacts would be useful in industrial development of ACP application for wheat germ stabilization.Blanching is an important process in the preparation of navy beans (Phaseolus vulgaris L.) for canning. We here explore the effect of blanching which can profoundly affect protein composition and introduce protein-primary-level modifications. Amino acid analysis showed significantly decreased protein abundance (58.5%) in blanched beans compared to raw beans. Oxidopamine manufacturer Proteomic analyses revealed a decrease in high molecular weight isoforms of the major storage globulin proteins phaseol