Foley Chang (baboonstraw60)
0 wt % (3-aminopropyl)trimethoxysilylated NFBC was only 8% less transparent than neat poly(methyl methacrylate) at 600 nm. In addition, the tensile strength of the nanocomposite was more than twice that of neat poly(methyl methacrylate) when 1 wt % of the surface-modified NFBC was added. Eliglustat tartrate The surface-modified NFBC is expected to be a reinforcing nanofiber material that imparts excellent physical properties to fiber-reinforced resins.Raman spectroscopy can be used as a tool to study virus entry and pathogen-driven manipulation of the host efficiently. To date, Epstein-Barr virus (EBV) entry and altered biochemistry of the glial cell upon infection are elusive. In this study, we detected biomolecular changes in human glial cells, namely, HMC-3 (microglia) and U-87 MG (astrocytes), at two variable cellular locations (nucleus and periphery) by Raman spectroscopy post-EBV infection at different time points. Two possible phenomena, one attributed to the response of the cell to viral attachment and invasion and the other involved in duplication of the virus followed by egress from the host cell, are investigated. These changes corresponded to unique Raman spectra associated with specific biomolecules in the infected and the uninfected cells. The Raman signals from the nucleus and periphery of the cell also varied, indicating differential biochemistry and signaling processes involved in infection progression at these locations. Molecules such as cholesterol, glucose, hyaluronan, phenylalanine, phosphoinositide, etc. are associated with the alterations in the cellular biochemical homeostasis. These molecules are mainly responsible for cellular processes such as lipid transport, cell proliferation, differentiation, and apoptosis in the cells. Raman signatures of these molecules at distinct time points of infection indicated their periodic involvement, depending on the stage of virus infection. Therefore, it is possible to discern the details of variability in EBV infection progression in glial cells at the biomolecular level using time-dependent in vitro Raman scattering.Previous studies on glass-transition temperature (Tg) prediction mainly focus on developing diverse methods with higher regression accuracy, but very little attention has been paid to the dataset. Generally, a large range of Tg values of a specified polymer could be found in the literature but which one should be selected into a dataset merely depends on the implicit preference rather than a recognized and clear criterion. In this paper, limiting glass-transition temperature (Tg(∞)), a constant value obtained at the infinite number-average molecular weight Mn, was validated to be an adequate bridge index in the Tg prediction models. Furthermore, a new dataset containing 198 polymers was established to predict Tg(∞) using the improved group contribution method and it showed a good correlation (R2 = 0.9925, adjusted R2 = 0.9894). The method could also generate Tg-Mn curves by introducing the Tg(∞) function and provide more information to polymer scientists and engineers for material selection, product design, and synthesis.Supercritical carbon dioxide (scCO2) has gained considerable attention in the process industry due to its favorable economic, environmental, and technical characteristics. Polymer processing is one of the key industrial applications where scCO2 plays an important role. In order to be able to efficiently design the polymer processing equipment, understanding the phase behavior and partition of solutes between scCO2 and polymers is necessary. This paper investigates the partitioning of acetone - a conventional polar cosolvent - between scCO2 and polystyrene - a glassy polymer. We highlight the importance of taking into account the polar interactions between acetone molecules and their role in the polymer phase behavior. The system is modeled under a wide range of temperatures and pressures (278.15-518.2 K and 1.0-20.0 MPa) using the