Lentz Mosegaard (baboondonald54)

Mechanisms responsible for neuronal vulnerability in the brain remain unclear. Striatal neurons are preferentially damaged by 3-nitropropionic acid (3-NP), a mitochondrial complex-II inhibitor, causing striatal damage reminiscent of Huntington's disease (HD), but the mechanisms of the selectivity are not as well understood. We have discovered that Rhes, a protein enriched in the striatum, removes mitochondria via the mitophagy process. The process becomes intensified in the presence of 3-NP, thereby eliminating most of the mitochondria from the striatum. We put forward the hypothesis that Rhes acts as a 'mitophagy ligand' in the brain and promotes mitophagy via NIX, a mitophagy receptor. Since Rhes interacts and promotes toxicity in association with mutant huntingtin (mHTT), the genetic cause of HD, it is tempting to speculate on whether the exaggerated mitophagy may be a contributing factor to the striatal lesion found in HD. Thus, Rhes-mediated exaggerated mitophagy may act as a weapon of striatal destruction in the brain. © 2020 The Author(s).MOTIVATION Cell-to-cell variation has uncovered associations between cellular phenotypes. However, it remains challenging to address the cellular diversity of such associations. RESULTS Here we do not rely on the conventional assumption that the same association holds throughout the entire cell population. Instead, we assume that associations may exist in a certain subset of the cells. We developed CENA to reliably predict pairwise associations together with the cell subsets in which the associations are detected. CENA does not rely on predefined subsets but only requires that the cells of each predicted subset would share a certain characteristic state. CENA may therefore reveal dynamic modulation of dependencies along cellular trajectories of temporally evolving states. Using simulated data, we show the advantage of CENA over existing methods and its scalability to a large number of cells. Application of CENA to real biological data demonstrates dynamic changes in associations that would be otherwise masked. AVAILABILITY CENA is available as an R package at Github https//github.com/mayalevy/CENA, and is accompanied by a complete set of documentations and instructions. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online. © The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email journals.permissions@oup.com.A growing number of integral membrane proteins have been shown to tune their activity by selectively interacting with specific lipids. The ability to regulate biological functions via lipid interactions extends to the diverse group of proteins that associate only peripherally with the lipid bilayer. Nesuparib However, the structural basis of these interactions remains challenging to study due to their transient and promiscuous nature. Recently, native mass spectrometry has come into focus as a new tool to investigate lipid interactions in membrane proteins. Here, we outline how the native MS strategies developed for integral membrane proteins can be applied to generate insights into the structure and function of peripheral membrane proteins. Specifically, native MS studies of proteins in complex with detergent-solubilized lipids, bound to lipid nanodiscs, and released from native-like lipid vesicles all shed new light on the role of lipid interactions. The unique ability of native MS to capture and interrogate protein-protein, protein-ligand, and protein-lipid interactions opens exciting new avenues for the study of peripheral membrane protein biology. © 2020 The Author(s).Chemosensory systems are signaling pathways elegantly organized in hexagonal arrays that confer unique functional features to these systems such as signal amplification. Chemosensory arrays adopt different subcellular localizations from one bacterial species to another, yet keeping their supramolecular organization unmodifie