Allen Rosendahl (angoracover43)
The bioengineering electroactive construct of a nerve-guided conduit for repairing and restoring injured nerves is an exciting biomedical endeavor that has implications for the treatment of peripheral nerve injury. In this study, we report the development the polycaprolactone (PCL) nanofibrous substrate consisting of turmeric (TUR) and polyaniline nanoparticles (PANINPs) exhibits topological and biological features that mimics the natural extracellular matrix (ECM) for nerve cells. We evaluated the morphology of 2-dimensional (2D) fibrous substrates, and their ability of stem cell adhesion, growth and proliferation rate were influenced by use of various concentrations of turmeric in PCL-TUR substrates. The results showed that 0.62 wt% of TUR and 0.28 wt% of PANINPs in PCL nanofibers substrate exhibited the optimal cellular microenvironment to accelerate PC12 cellular activities. The in vitro experiments revealed that PCL-TUR@PANI substrates significantly stimulated the proliferation, differentiation, and spontaneous outgrowth and extension of neurites from the cells. The substrate has the capacity to respond directly to neuronal markers with significant upregulation of βIII-Tubulin and TREK-1 through myelination, and also trigger neurotrophic protein expression, which was confirmed via immunocytochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. This study provides a new technique to design substrate of nerve tissue-specific microenvironment for peripheral nerve cell regeneration and could offer promising biomaterials for in vivo peripheral nerve repair.Bone morphogenetic proteins (BMPs) are well known as enhancers and facilitators of osteogenesis during bone regeneration. The use of recombinant BMP-2 (rhBMP-2) in bone defect healing has drawbacks, which has driven the scouting for alternatives, such as recombinant BMP-9 (rhBMP-9), to provide comparable new bone formation. However, the dosage of rhBMP-9 is quintessential for the facilitation of adequate bone defect healing. Therefore, this study has been designed to evaluate the optimal dosage of BMP-9 by comparing the bone defect healing induced by rhBMP-9 over rhBMP-2. The chitosan (CS) microparticles (MPs), coated with BMPs, were embedded in a thermoresponsive methylcellulose (MC) and calcium alginate (Alg) based injectable delivery system containing a dosage of either 0.5 μg or 1.5 μg of the respective rhBMP per bone defect. A 5 mm critical-sized cranial defect rat model has been used in this study, and bone tissues were harvested at eight weeks post-surgery. The standard tools for comparing the new bone regeneration included micro computerized tomography (micro-CT) and histological analysis. A novel perspective of analyzing the new bone quality and crystallinity was employed by using Raman spectroscopy, along with its elastic modulus quantified through Atomic Force Microscopy (AFM). Results showed that the rhBMP-9 administered at a dosage of 1.5 μg per bone defect, using this delivery system, can adequately facilitate the bone void filling with ample new bone mineralization and crystallinity as compared to rhBMP-2, thus approving the hypothesis for a viable rhBMP-2 alternative.A variety of novel biomaterials are emerging as alternatives to conventional metals and alloys, for use in spinal implants. These promise potential advantages with respect to e.g. elastic modulus compatibility with the host bone, improved radiological imaging or enhanced cellular response to facilitate osseointegration. However, to date there is scarce comparative data on the biological response to many of these biomaterials that would give insights into the relative level of bone formation, resorption inhibition and inflammation. Thus, in this study, we aimed to evaluate and compare the in vitro biological response to standard discs of four alternative biomaterials polyether ether ketone (PEEK), zirconia toughened alumina (ZTA), silicon nitride (SN) and surface-tex