Gupta Foldager (alleyrobin6)

The Protein Ensemble Database (PED) (https//proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.The Human Microbiome Project (HMP) explored microbial communities of the human body in both healthy and disease states. Two phases of the HMP (HMP and iHMP) together generated >48TB of data (public and controlled access) from multiple, varied omics studies of both the microbiome and associated hosts. The Human Microbiome Project Data Coordination Center (HMPDACC) was established to provide a portal to access data and resources produced by the HMP. The HMPDACC provides a unified data repository, multi-faceted search functionality, analysis pipelines and standardized protocols to facilitate community use of HMP data. Recent efforts have been put toward making HMP data more findable, accessible, interoperable and reusable. HMPDACC resources are freely available at segmental glomerulosclerosis (FSGS), a type of primary glomerular disease, is the leading cause of end-stage renal disease (ESRD). Several studies have revealed that certain single-gene mutations are involved in the pathogenesis of FSGS; however, the main cause of FSGS has not been fully elucidated. Homozygous mutations in the glomerular basement membrane gene can lead to early renal failure, while heterozygous carriers develop renal failure symptoms late. Here, molecular genetic analysis of clinical information collected from clinical reports and medical records was performed. Results revealed that nephrosis 2 (NPHS2) gene polymorphism aggravated renal damage in three FSGS families with heterozygous COL4A3 mutation, leading to early renal failure in index patients. Our findings suggest that COL4A3 and NPHS2 may have a synergistic effect on renal injury caused by FSGS. Further analysis of the glomerular filtration barrier could help assess the cause of kidney damage. Moreover, a detailed analysis of the glomerular basement membrane-related genes and podocyte structural proteins may help us better understand FSGS pathogenesis and provide insights into the prognosis and treatment of hereditary glomerulonephropathy. Thyroid dysfunction is a common endocrine problem during pregnancy; correct diagnosis and appropriate treatments are essential to avoid adverse pregnancy outcomes. Besides, it is vital to identify and quantify the major risk factors for gestational thyroid dysfunction, including thyroid autoimmunity, human chorionic gonadotropin (HCG) concentration, body mass index (BMI) and parity. The study objective was to establish reference ranges during early pregnancy and to explore the relationship between risk factors and thyroid stimulating hormone (TSH), fre