Dohn Hemmingsen (adultfifth8)

This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.Intensive fisheries have reduced fish biodiversity and abundance in aquatic ecosystems worldwide1-3. 'No-take' marine reserves have become a cornerstone of marine ecosystem-based fisheries management4-6, and their benefits for adjacent fisheries are maximized when reserve design fosters synergies among nearby reserves7,8. The applicability of this marine reserve network paradigm to riverine biodiversity and inland fisheries remains largely untested. Here we show that reserves created by 23 separate communities in Thailand's Salween basin have markedly increased fish richness, density, and biomass relative to adjacent areas. Moreover, key correlates of the success of protected areas in marine ecosystems-particularly reserve size and enforcement-predict differences in ecological benefits among riverine reserves. Occupying a central position in the network confers additional gains, underscoring the importance of connectivity within dendritic river systems. The emergence of network-based benefits is remarkable given that these reserves are young (less than 25 years old) and arose without formal coordination. Freshwater ecosystems are under-represented among the world's protected areas9, and our findings suggest that networks of small, community-based reserves offer a generalizable model for protecting biodiversity and augmenting fisheries as the world's rivers face unprecedented pressures10,11.The global elimination of lymphatic filariasis (LF) is a major focus of the World Health Organization. One key challenge is locating residual infections that can perpetuate the transmission cycle. We show how a targeted sampling strategy using predictions from a geospatial model, combining random forests and geostatistics, can improve the sampling efficiency for identifying locations with high infection prevalence. Predictions were made based on the household locations of infected persons identified from previous surveys, and environmental variables relevant to mosquito density. Results show that targeting sampling using model predictions would have allowed 52% of infections to be identified by sampling just 17.7% of households. The odds ratio for identifying an infected individual in a household at a predicted high risk compared to a predicted low risk location was 10.2 (95% CI 4.2-22.8). This study provides evidence that a 'one size fits all' approach is unlikely to yield optimal results when making programmatic decisions based on model predictions. Instead, model assumptions and definitions should be tailored to each situation based on the objective of the surveillance program. When predictions are used in the context of the program objectives, they can result in a dramatic improvement in the efficiency of locating infected individuals. Some clinicians may be forced to temporarily extend treatment intervals in neovascular age-related macular degeneration (nAMD) eyes with frequent retreatments to reduce the number of visits during the COVID-19 pandemic. To provide an indication of what these outcomes may be, we studied eyes with active lesions with unplanned treatment interval extensions before the pandemic occurred. We compared eyes with active disease despite ≤6 weekly injections whose next injection was extended to ≥7 weeks and those whose intervals were not extended. We identified 1559 (16%) of 9602 eyes from the Fight Retinal Blindness! (FRB!) registry (2013 and 2018) that fit this criteria. Eyes were further stratified into four groups by the mean interval over the following 6 months (1) ≤6 weeks (81%), (2) 7-9 weeks (9%), (3) 10-12 weeks (5%) and (4) >12 weeks (5%). There was a significant loss in VA in eyes extended to >12 weeks compared to the non-extended group (adjusted VA change, mean (95% CI) ≤6 weeks, 0.4 (-1.5 to 2.2), versus >12 weeks, -4.7 (-7.4 to -2.1), lett