Arildsen Macdonald (actorflare83)

The soluble lytic transglycosylase Cj0843c from Campylobacter jejuni breaks down cell-wall peptidoglycan (PG). Its nonhydrolytic activity sustains cell-wall remodeling and repair. We report herein our structure-function studies probing the substrate preferences and recognition by this enzyme. Our studies show that Cj0843c exhibits both exolytic and endolytic activities and forms the N-acetyl-1,6-anhydromuramyl (anhMurNAc) peptidoglycan termini, the typical transformation catalyzed by lytic transglycosylase. Cj0843c shows a trend toward a preference for substrates with anhMurNAc ends and those with peptide stems. Mutagenesis revealed that the catalytic E390 is critical for activity. In addition, mutagenesis showed that R388 and K505, located in the positively charged pocket near E390, also serve important roles. Mutation of R326, on the opposite side of this positively charged pocket, enhanced activity. Our data point to different roles for positively charged residues in this pocket for productive binding of the predominantly negatively charged PG. We also show by X-ray crystallography and by molecular dynamics simulations that the active site of Cj0843c is still capable of binding GlcNAc containing di- and trisaccharides without MurNAc moieties, without peptide stems, and without the anhMurNAc ends.NO2 gas sensors based on metal oxides under wild conditions are highly demanded yet an incomplete surface reaction and humidity interference on the gas-sensing performance limit their applications. Herein, we report three-dimensional (3D) porous In2O3 microcubes via a simple hydrothermal strategy to produce outstanding NO2 gas-sensing performance fast equilibrium of the surface reaction at 150 °C and negligible humidity dependence on the NO2 gas sensing at room temperature. The 3D porous In2O3 microcubes with high surface areas, suitable pore sizes, rich oxygen vacancies, and high conductivity are testified. The underlying structural transformation mechanism for 3D porous In2O3 is investigated in detail. The as-made 3D porous In2O3 microcubic gas sensors present excellent gas-sensing performance to 50 ppm NO2 at 150 °C, including a high response value (2329), fast response/recovery time (10/9 s), a low detection limit (10 ppb), long-term stability (60 days), and strong selectivity. Furthermore, they exhibit relatively stable NO2 gas response under humidity variation (20-80%). The NO2 gas mechanism under the interference of water is also clarified.There are some methods to prepare superwetting surfaces with underwater superoleophobicity (UWSOB) or underoil superhydrophobicity (UOSHB), but it is still thorny to put forward a universal strategy for constructing dual superlyophobic surfaces in oil-water systems due to a thermodynamic contradiction. Herein, a universal strategy was proposed to prepare the dual superlyophobic surfaces in oil-water systems only via delicately controlling surface chemistry, that is, adjusting the ratios of superhydrophilic and superhydrophobic counterparts in the spray solution. Three types of materials, attapulgite (APT), TiO2, and loess, were chosen to prepare a diverse series of mixed coatings (mass gradient of superhydrophobic counterparts from 0 to 100 wt %). Sulbactam pivoxil solubility dmso With the proportion of each superhydrophobic counterpart increasing, the underwater oil contact angle (θo/w*) of each mixed coating slightly decreased but still was more than 150°, that is, UWSOB. In contrast, the underoil water contact angle (θw/o*) was significantly improved, realizing the transformation from UOHL (or UOHB) to UOSHB. More importantly, the respective mass ratios of superhydrophobic counterparts in the resulting mixed coatings of APT, TiO2, and loess were finally determined to be 0.3, 0.4, and 0.2, respectively. Taking APT as a model, a train of mixed APT coatings with different superhydrophobic components were systematically characterized and analyzed. Finally, the prepared superlyophobic sep